

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Preliminary Audit Report
MoonBag Security Assessment

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Executive Summary
For this security assessment, SCRL received a request on Tuesday, April 30, 2024

Client Language Audit Method Confidential Network Chain Contract

MoonBag Solidity Whitebox Public Ethereum 0xa7F4195F10F1a62B102bD683eAB131d657A6c6e4

Report Version Twitter Telegram Website

1.0 - - -

Scoring:

Vulnerability Summary

 6
Total Findings

6
Unresolved

0
Resolved

0
Mitigate

0
Acknowledge

0
Decline

▪ 0 Critical
Critical severity is assigned to security vulnerabilities that
pose a severe threat to the smart contract and the entire
blockchain ecosystem.

▪ 0 High High-severity issues should be addressed quickly to
reduce the risk of exploitation and protect users' funds
and data.

▪ 1 Medium 1 Unresolved It's essential to fix medium-severity issues in a
reasonable timeframe to enhance the overall security of
the smart contract.

▪ 2 Low 2 Unresolved While low-severity issues can be less urgent, it's still
advisable to address them to improve the overall
security posture of the smart contract.

▪ 0 Very Low Very Low severity is used for minor security concerns
that have minimal impact and are generally of low risk.

▪ 2 Informational 2 Unresolved Used to categorize security findings that do not pose a
direct security threat to the smart contract or its users.
Instead, these findings provide additional information,
recommendations

▪ 1 Gas-
optimization

1 Unresolved Suggestions for more efficient algorithms or
improvements in gas usage, even if the current code is
already secure.

MoonBag Security Assessment

 PRELIMINARY AUDIT REPORT

Security Assessment by SCRL on Thursday, May 2, 2024

 SCRL is deliver a security solution for Web3 projects by expert security researchers.

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10

Scoring

https://etherscan.io/token/0xa7F4195F10F1a62B102bD683eAB131d657A6c6e4
https://x.com/NbdToken
https://t.me/NBDToken
https://neverbackdown.space/

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Audit Scope:

File SHA-1 Hash

src/MoonBag.sol 7c52e9a45686a18ba55839ae97fca05d3006e64b

Audit Version History:

Version Date Description

1.0 Thursday, May 2, 2024 Preliminary Report

Audit information:

Request Date Audit Date Re-assessment Date

Tuesday, April 30, 2024 Thursday, May 2, 2024 -

Smart Contract Audit Summary

Security Assessment Author

Auditor: Mark K. [Security Researcher | Redteam]
Kevin N. [Security Researcher | Web3 Dev]
Yusheng T. [Security Researcher | Incident Response]

Document Approval: Ronny C. CTO & Head of Security Researcher
Chinnakit J. CEO & Founder

Digital Sign

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Disclaimer
Regarding this security assessment, there are no guarantees about the security of the program instruction
received from the client is hereinafter referred to as “Source code”.
And SCRL hereinafter referred to as “Service Provider”, the Service Provider will not be held liable for any
legal liability arising from errors in the security assessment. The responsibility will be the responsibility of the
Client, hereinafter referred to as “Service User” and the
Service User agrees not to be held liable to the service provider in any case. By contract
Service Provider to conduct security assessments with integrity with professional ethics, and transparency to
deliver security assessments to users The Service Provider has the right to postpone the delivery of the
security assessment. If the security assessment is delayed whether caused by any reason and is not
responsible for any delayed security assessments.
If the service provider finds a vulnerability The service provider will notify the service user via the
Preliminary Report, which will be kept confidential for security. The service provider disclaims responsibility
in the event of any attacks occurring whether before conducting a security assessment. Or happened later All
responsibility shall be sole with the service user.

Security Assessment Is Not Financial/Investment Advice Any loss arising from any investment in any project is the
responsibility of the investor.

SCRL disclaims any liability incurred. Whether it's Rugpull, Abandonment, Soft Rugpull, Exploit, Exit Scam.

Security Assessment Procedure
1. Request The client must submit a formal request and follow the procedure. By submitting the source code

and agreeing to the terms of service.
2. Audit Process Check for vulnerabilities and vulnerabilities from source code obtained by experts using formal

verification methods, including using powerful tools such as Static Analysis, SWC Registry, Dynamic Security Analysis, Automated
Security Tools, CWE, Syntax & Parameter Check with AI ,WAS (Warning Avoidance System a python script tools powered by SCRL).

3. Security Assessment Deliver Preliminary Security Assessment to clients to acknowledge the risks and vulnerabilities.
4. Consulting Discuss on risks and vulnerabilities encountered by clients to apply to their source code to mitigate

risks.
a. Re-assessment Reassess the security when the client implements the source code improvements and if the client is

satisfied with the results of the audit. We will proceed to the next step.
5. Full Audit Report SCRL provides clients with official security assessment reports informing them of risks and

vulnerabilities. Officially and it is assumed that the client has been informed of all the information.

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Risk Rating
Risk rating using this commonly defined: 𝑅𝑖𝑠𝑘 𝑟𝑎𝑡𝑖𝑛𝑔 = 𝑖𝑚𝑝𝑎𝑐𝑡 ∗ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

Impact The severity and potential impact of an attacker attack
Confidence Ensuring that attackers expose and use this vulnerability

Confidence

Impact [Likelihood]

Low Medium High

Low Very Low Low Medium

Medium Low Medium High

High Medium High Critical

Severity is a risk assessment It is calculated from the Impact and Confidence values using the following
calculation methods,
𝑅𝑖𝑠𝑘 𝑟𝑎𝑡𝑖𝑛𝑔 = 𝑖𝑚𝑝𝑎𝑐𝑡 ∗ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒
It is categorized into
7 categories severity based

For Informational & Non-class/Optimization/Best-practices will not be counted as severity

Category

Centralization Risk is The
risk incurred by
a sole proprietor,
such as the Owner being
able to change
something without
permission

Security Risk of loss
or damage if it's
no mitigate

Economics Risk is
Risks that may affect
the economic
mechanism system,
such as the ability to
increase Mint token

Coding Style is Tips
coding for efficiency
performance

Logical Issue is that
can cause errors to
core processing, such
as any prior operations
that cause background
processes to crash.

Best Practices is
suggestions for
improvement

Authorization is
Possible pitfalls from
weak coding allows
unrelated people to
take any action to
modify the values.

Optimization is
performance
improvement

Mathematical
Any erroneous
arithmetic operations
affect the operation of
the system or lead to
erroneous values.

Gas Optimization is
increase performance
to avoid expensive gas

Naming Conventions
naming variables that
may affect code
understanding or
naming inconsistencies

Dead Code having
unused code This may
result in wasted
resources and gas fees.

Centralization

Risk

Security Risk

Economics Risk

Coding Style

Logical Issue

Best Practices

Authorization

Optimization

Mathematical

Gas Optimization

Naming Conventions

Dead Code

Gas-optimization Informational Very Low Low Medium High Critical

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Table Of Content

Summary

▪ Executive Summary
▪ CVSS Scoring
▪ Vulnerability Summary
▪ Audit Scope
▪ Audit Version History
▪ Audit Information
▪ Smart Contract Audit Summary
▪ Security Assessment Author
▪ Digital Sign
▪ Disclaimer
▪ Security Assessment Procedure
▪ Risk Rating
▪ Category

Source Code Detail
▪ Dependencies / External Imports
▪ Visibility, Mutability, Modifier function testing

Vulnerability Finding
▪ Vulnerability
▪ SWC Findings
▪ Contract Description
▪ Inheritance Relational Graph
▪ UML Diagram

About SCRL

MoonBag Security Assessment

Source Units in Scope

Source Units Analyzed: 1

Source Units in Scope: 1 (100%)

Ty

pe
File

Logic

Contra

cts

Interfaces
Lin

es

nLin

es

nSL

OC

Comm

ent

Lines

Compl

ex.

Score

Capabili

ties

📝
src/MoonB

ag.sol
1

196 180 120 26 83 Σ

📝 Totals 1

196 180 120 26 83 Σ

Legend: [➖]

• Lines: total lines of the source unit
• nLines: normalized lines of the source unit (e.g. normalizes functions spanning multiple

lines)
• nSLOC: normalized source lines of code (only source-code lines; no comments, no blank

lines)

• Comment Lines: lines containing single or block comments
• Complexity Score: a custom complexity score derived from code statements that are known

to introduce code complexity (branches, loops, calls, external interfaces, ...)

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Visibility, Mutability, Modifier function testing

Components

📝Contracts 📚Libraries 🔍Interfaces 🎨Abstract

1 0 0 0

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter
methods for public stateVars are not included.

🌐Public 💰Payable

12 0

External Internal Private Pure View

1 17 0 0 6

StateVariables

Total 🌐Public

6 0

Capabilities

Solidity
Versions
observed

🧪
Experimental
Features

💰 Can
Receive Funds

🖥 Uses

Assembly

💣 Has
Destroyable
Contracts

0.8.18

📤
Transfers
ETH

⚡ Low-
Level
Calls

👥
DelegateC
all

🧮 Uses
Hash
Functions

🔖
ECRecov
er

🌀
New/Create/C
reate2

♻️ TryCatch Σ Unchecked

yes

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Dependencies / External Imports

Dependency / Import Path Count

@openzeppelin/contracts/access/Ownable.sol 1

@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol 1

@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol 1

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Vulnerability Findings

ID Vulnerability Detail Severity Category Status

CEN-01 Centralization Risk

-

SEC-01 Local variables shadowing (shadowing-local)

-

SEC-02 Mark public functions as external where possible

-

SEC-03
Conformity to Solidity naming conventions (naming-
convention)

-

SEC-04 Functions that are not used (dead-code)

-

GAS-01 Use Custom Errors

-

Medium Centralization

Risk

Low Naming Conventions

Low Best Practices

Informational Naming Conventions

Informational Dead Code

Gas-optimization Gas Optimization

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

CEN-01: Centralization Risk

Vulnerability Detail Severity Location Category Status

Centralization Risk

Check on finding

-

Finding:

function withdrawToken(address _token) external onlyOwner {

Explain Function Capability:
The contract provides several functions:

1. function withdrawToken(address _token):
The withdrawToken function allows the contract owner to withdraw any ERC20 tokens held
by the contract.

Medium Centralization

Risk

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Centralization Risk

Recommendation:
In terms of timeframes, there are three categories: short-term, long-term, and permanent.

For short-term solutions, a combination of timelock and multi-signature (2/3 or 3/5) can be used to
mitigate risk by delaying sensitive operations and avoiding a single point of failure in key management.
This includes implementing a timelock with a reasonable latency, such as 48 hours, for privileged
operations; assigning privileged roles to multi-signature wallets to prevent private key compromise; and
sharing the timelock contract and multi-signer addresses with the public via a medium/blog link.

For long-term solutions, a combination of timelock and DAO can be used to apply decentralization and
transparency to the system. This includes implementing a timelock with a reasonable latency, such as 48
hours, for privileged operations; introducing a DAO/governance/voting module to increase transparency
and user involvement; and sharing the timelock contract, multi-signer addresses, and DAO information
with the public via a medium/blog link.

Finally, permanent solutions should be implemented to ensure the ongoing security and protection of
the system.

Alleviation:
-

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

SEC-01: Local variables shadowing (shadowing-local)

Vulnerability Detail Severity Location Category Status

Local variables shadowing
(shadowing-local)

Check on finding

-

Finding:
 MoonBag._approve(address,address,uint256).owner (src/MoonBag.sol:166) shadows:
 • Ownable.owner() (@openzeppelin/contracts/access/Ownable.sol#43-45) (function)

 MoonBag._spendAllowance(address,address,uint256).owner (src/MoonBag.sol:178) shadows:
 • Ownable.owner() (@openzeppelin/contracts/access/Ownable.sol#43-45) (function)

 MoonBag.allowance(address,address).owner (src/MoonBag.sol:81) shadows:
 • Ownable.owner() (@openzeppelin/contracts/access/Ownable.sol#43-45) (function)

 MoonBag.approve(address,uint256).owner (src/MoonBag.sol:87) shadows:
 • Ownable.owner() (@openzeppelin/contracts/access/Ownable.sol#43-45) (function)

 MoonBag.decreaseAllowance(address,uint256).owner (src/MoonBag.sol:110) shadows:
 • Ownable.owner() (@openzeppelin/contracts/access/Ownable.sol#43-45) (function)

 MoonBag.increaseAllowance(address,uint256).owner (src/MoonBag.sol:104) shadows:
 • Ownable.owner() (@openzeppelin/contracts/access/Ownable.sol#43-45) (function)

 MoonBag.transfer(address,uint256).owner (src/MoonBag.sol:73) shadows:
 • Ownable.owner() (@openzeppelin/contracts/access/Ownable.sol#43-45) (function)

Recommendation:
Rename the local variables that shadow another component.

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing

Alleviation:
-

Low Naming Conventions

https://github.com/crytic/slither/wiki/Detector-Documentation#local-variable-shadowing

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

SEC-02: Mark public functions as external where possible

Vulnerability Detail Severity Location Category Status

Mark public functions as
external where possible, to
enhance contract's control-flow
readability

Check on finding

-

Finding:
 The following public functions could be turned into external in MoonBag
(src/MoonBag.sol:8-196) contract:

Recommendation:
Mark public functions as external where it is possible

Reference: https://github.com/pessimistic-io/slitherin/blob/master/docs/public_vs_external.md

Alleviation:
-

Low Best Practices

https://github.com/pessimistic-io/slitherin/blob/master/docs/public_vs_external.md

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

SEC-03: Conformity to Solidity naming conventions

Vulnerability Detail Severity Location Category Status

Conformity to Solidity naming
conventions (naming-
convention)

Check on finding

-

Finding:
 Parameter MoonBag.withdrawToken(address)._token (src/MoonBag.sol:191) is not in
mixedCase

Recommendation:
Follow the Solidity [naming convention] (https://solidity.readthedocs.io/en/v0.4.25/style-
guide.html#naming-conventions).

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-
naming-conventions

Alleviation:
-

Informational Naming Conventions

https://solidity.readthedocs.io/en/v0.4.25/style-guide.html#naming-conventions
https://solidity.readthedocs.io/en/v0.4.25/style-guide.html#naming-conventions
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions
https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-solidity-naming-conventions

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

SEC-04: Functions that are not used (dead-code)

Vulnerability Detail Severity Location Category Status

Functions that are not used
(dead-code)

Check on finding

-

Finding:
 MoonBag._burn(address,uint256) (src/MoonBag.sol:149-163) is never used and should be
removed

Recommendation:
Remove unused functions.

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

Alleviation:
-

Informational Dead Code

https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

GAS-01: Use Custom Errors

Vulnerability Detail Severity Location Category Status

Use Custom Errors - Check on finding

-

Finding:
File: MoonBag.sol

112: require(currentAllowance >= subtractedValue, "ERC20:allowance<0");

125: require(from != address(0), "ERC20:From 0");

126: require(to != address(0), "ERC20:To 0");

128: require(fromBalance >= amount, "ERC20:amount>balance");

139: require(account != address(0), "ERC20:address(0)");

150: require(account != address(0), "ERC20:address(0)");

154: require(accountBalance >= amount, "ERC20:amount>balance");

170: require(owner != address(0), "ERC20:FromAddress(0)");

171: require(spender != address(0), "ERC20:ToAddress(0)");

184: require(currentAllowance >= amount, "ERC20: insufficient allowance");

Recommendation:
Instead of using error strings, to reduce deployment and runtime cost, you should use Custom
Errors. This would save both deployment and runtime cost.
https://blog.soliditylang.org/2021/04/21/custom-errors/

Gas Optimization

https://blog.soliditylang.org/2021/04/21/custom-errors/

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Alleviation:
-

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

SWC Findings

ID Title Scanning Result

SWC-100 Function Default Visibility Complete No risk

SWC-101 Integer Overflow and Underflow Complete No risk

SWC-102 Outdated Compiler Version Complete No risk

SWC-103 Floating Pragma Complete No risk

SWC-104 Unchecked Call Return Value Complete No risk

SWC-105 Unprotected Ether Withdrawal Complete No risk

SWC-106 Unprotected SELFDESTRUCT
Instruction

Complete No risk

SWC-107 Reentrancy Complete No risk

SWC-108 State Variable Default Visibility Complete No risk

SWC-109 Uninitialized Storage Pointer Complete No risk

SWC-110 Assert Violation Complete No risk

SWC-111 Use of Deprecated Solidity
Functions

Complete No risk

SWC-112 Delegatecall to Untrusted Callee Complete No risk

SWC-113 DoS with Failed Call Complete No risk

SWC-114 Transaction Order Dependence Complete No risk

SWC-115 Authorization through tx.origin Complete No risk

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

SWC-116 Block values as a proxy for time Complete No risk

SWC-117 Signature Malleability Complete No risk

SWC-118 Incorrect Constructor Name Complete No risk

SWC-119 Shadowing State Variables Complete No risk

SWC-120 Weak Sources of Randomness
from Chain Attributes

Complete No risk

SWC-121 Missing Protection against
Signature Replay Attacks

Complete No risk

SWC-122 Lack of Proper Signature
Verification

Complete No risk

SWC-123 Requirement Violation Complete No risk

SWC-124 Write to Arbitrary Storage Location Complete No risk

SWC-125 Incorrect Inheritance Order Complete No risk

SWC-126 Insufficient Gas Griefing Complete No risk

SWC-127 Arbitrary Jump with Function Type
Variable

Complete No risk

SWC-128 DoS With Block Gas Limit Complete No risk

SWC-129 Typographical Error Complete No risk

SWC-130 Right-To-Left-Override control
character (U+202E)

Complete No risk

SWC-131 Presence of unused variables Complete No risk

SWC-132 Unexpected Ether balance Complete No risk

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

SWC-133 Hash Collisions With Multiple
Variable Length Arguments

Complete No risk

SWC-134 Message call with hardcoded gas
amount

Complete No risk

SWC-135 Code With No Effects Complete No risk

SWC-136 Unencrypted Private Data On-Chain Complete No risk

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Contracts Description Table

Contract Type Bases

 └

Function Name Visibility Mutability Modifiers

MoonBag Implementation
IERC20Metadata,
Ownable

└ Public ❗️ 🛑 NO❗️

└ name Public ❗️ NO❗️

└ symbol Public ❗️ NO❗️

└ decimals Public ❗️ NO❗️

└ totalSupply Public ❗️ NO❗️

└ balanceOf Public ❗️ NO❗️

└ transfer Public ❗️ 🛑 NO❗️

└ allowance Public ❗️ NO❗️

└ approve Public ❗️ 🛑 NO❗️

└ transferFrom Public ❗️ 🛑 NO❗️

└ increaseAllowance Public ❗️ 🛑 NO❗️

└ decreaseAllowance Public ❗️ 🛑 NO❗️

└ _transfer Internal 🔒 🛑

└ _mint Internal 🔒 🛑

└ _burn Internal 🔒 🛑

└ _approve Internal 🔒 🛑

└ _spendAllowance Internal 🔒 🛑

└ withdrawToken External ❗️ 🛑 onlyOwner

Legend

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Symbol Meaning

🛑

Function can modify state

💵

Function is payable

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

Call Graph

Legend

Internal Call

External Call

Defined Contract

Undefined Contract

MoonBag

<Constructor>

_mint

_msgSender

name

symbol

decimals

totalSupply

balanceOf

transfer

_transfer

allowance

approve

_approve

transferFrom

_spendAllowance

increaseAllowance

decreaseAllowance

Transfer

_burn

Approval

type

withdrawToken IERC20Metadata

owner

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

UML Class Diagram

MoonBag

MoonBag.sol

Private:

 _balances: mapping(address=>uint256)

 _allowances: mapping(address=>mapping(address=>uint256))

 _totalSupply: uint256

 _name: string

 _symbol: string

 _decimals: uint8

Internal:

 _transfer(from: address, to: address, amount: uint256)

 _mint(account: address, amount: uint256)

 _burn(account: address, amount: uint256)

 _approve(owner: address, spender: address, amount: uint256)

 _spendAllowance(owner: address, spender: address, amount: uint256)

External:

 withdrawToken(_token: address) <<onlyOwner>>

Public:

 constructor(__name: string, __symbol: string, __totalSupply: uint256, __decimals: uint8)

 name(): string

 symbol(): string

 decimals(): uint8

 totalSupply(): uint256

 balanceOf(account: address): uint256

 transfer(to: address, amount: uint256): bool

 allowance(owner: address, spender: address): uint256

 approve(spender: address, amount: uint256): bool

 transferFrom(from: address, to: address, amount: uint256): bool

 increaseAllowance(spender: address, addedValue: uint256): bool

 decreaseAllowance(spender: address, subtractedValue: uint256): bool

THURSDAY, MAY 2, 2024
MoonBag Security Assessment

About SCRL

SCRL (Previously name SECURI LAB) was established in 2020, and its goal is to deliver a
security solution for Web3 projects by expert security researchers. To verify the security of
smart contracts, they have developed internal tools and KYC solutions for Web3 projects
using industry-standard technology. SCRL was created to solve security problems for Web3
projects. They focus on technology for conciseness in security auditing. They have
developed Python-based tools for their internal use called WAS and SCRL. Their goal is to
drive the crypto industry in Thailand to grow with security protection technology.

Follow Us On:

Website https://scrl.io/

Twitter https://twitter.com/scrl_io

Telegram https://t.me/scrl_io

Medium https://scrl.medium.com/

https://scrl.io/
https://twitter.com/scrl_io
https://t.me/scrl_io
https://scrl.medium.com/

	Components
	Exposed Functions
	StateVariables
	Capabilities
	Dependencies / External Imports

